Hierarchical clustering

Lecture 10 by Marina Barsky

Clustering algorithms

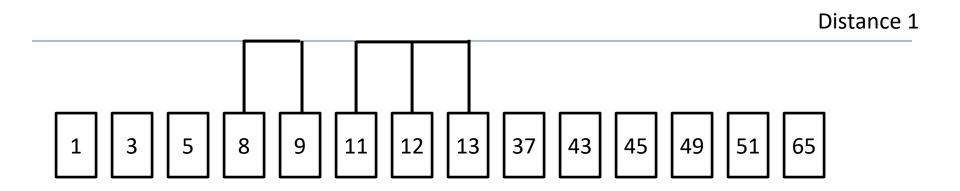
- **V** *K*-means clustering
 - Agglomerative hierarchical clustering
 - Density-based clustering

Clustering algorithms

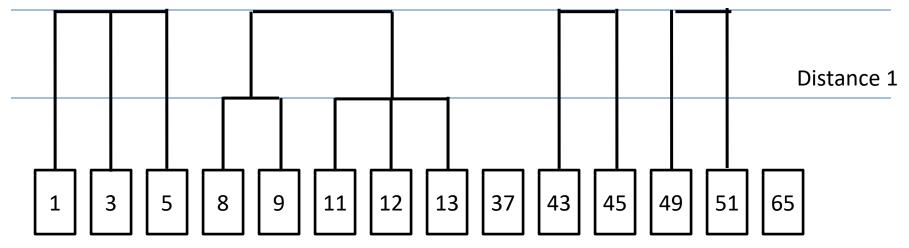
- K-means clustering
- Agglomerative hierarchical clustering
 - Density-based clustering

Warm-up: clustering people by age

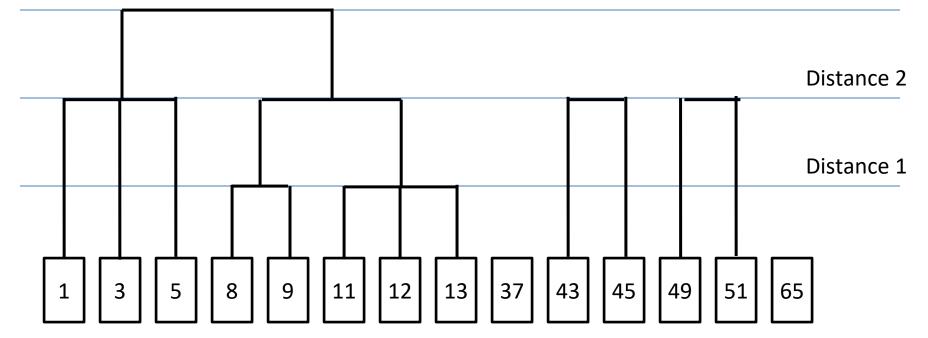
- Example in one dimension (to skip proximity matrix computation)
- The data consists of the ages of people at a family gathering
- The goal is to cluster participants by age
- The distance between people is the difference in their ages
- Heuristic: sort participants by age, then begin clustering the closest groups



Distance 2

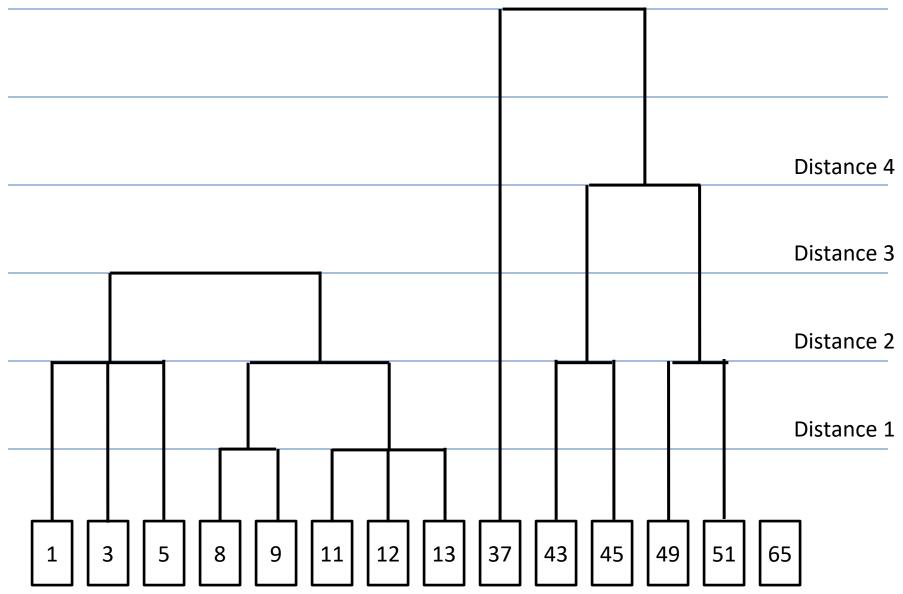


Distance 3

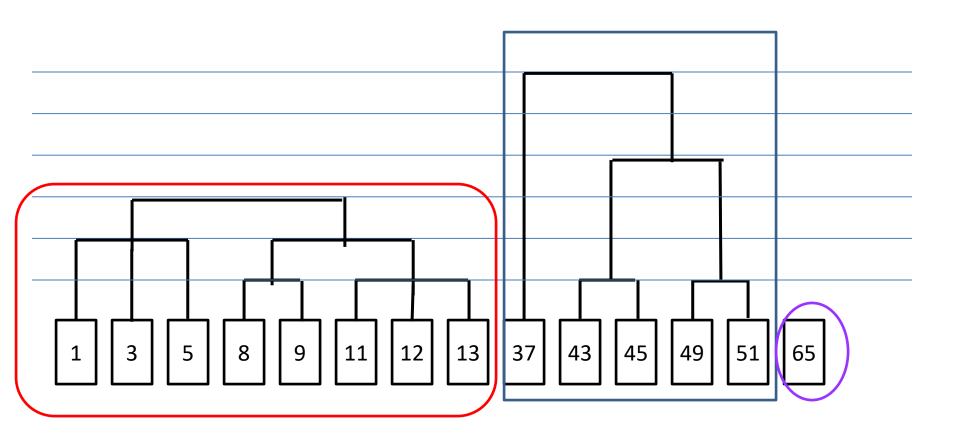




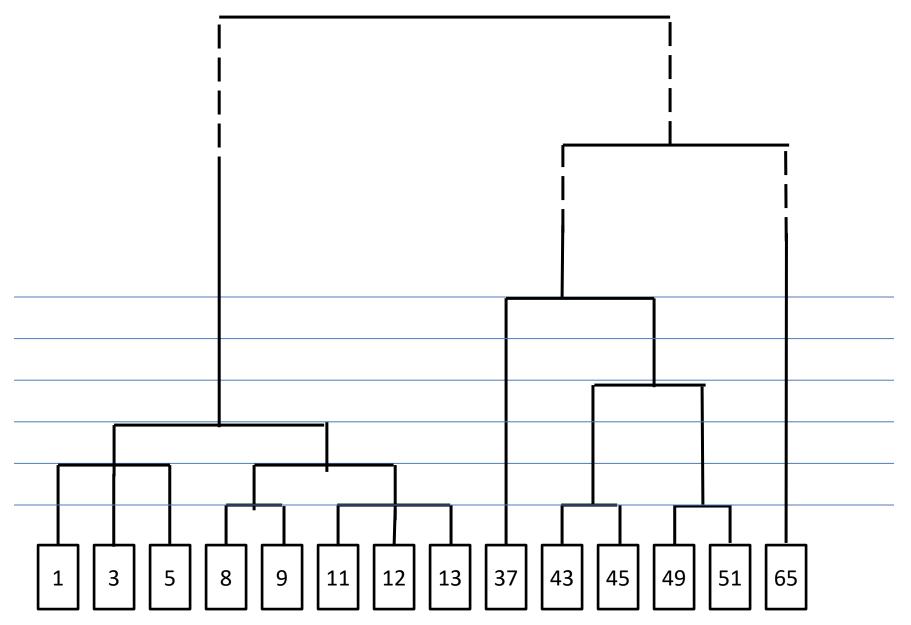
Distance 6



3 groups detected

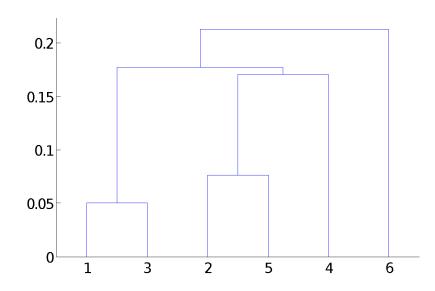


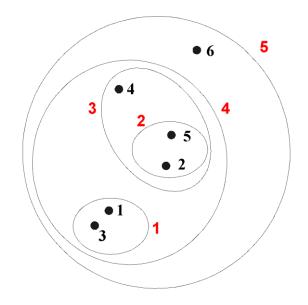
Final dendrogram



Hierarchical Clustering

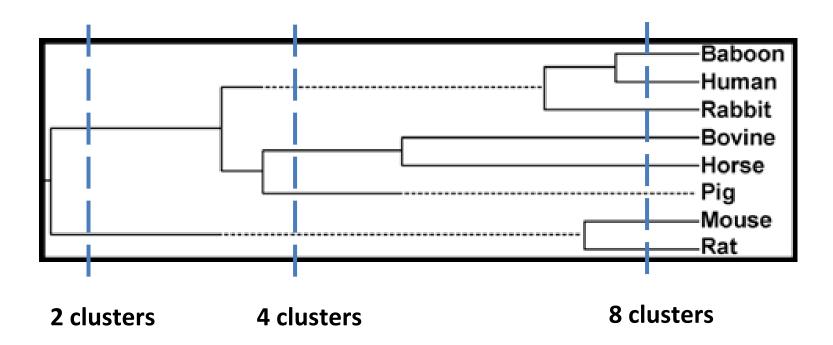
- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a *dendrogram*
 - A tree-like diagram that records the sequences of merges or splits





Strengths of hierarchical clustering

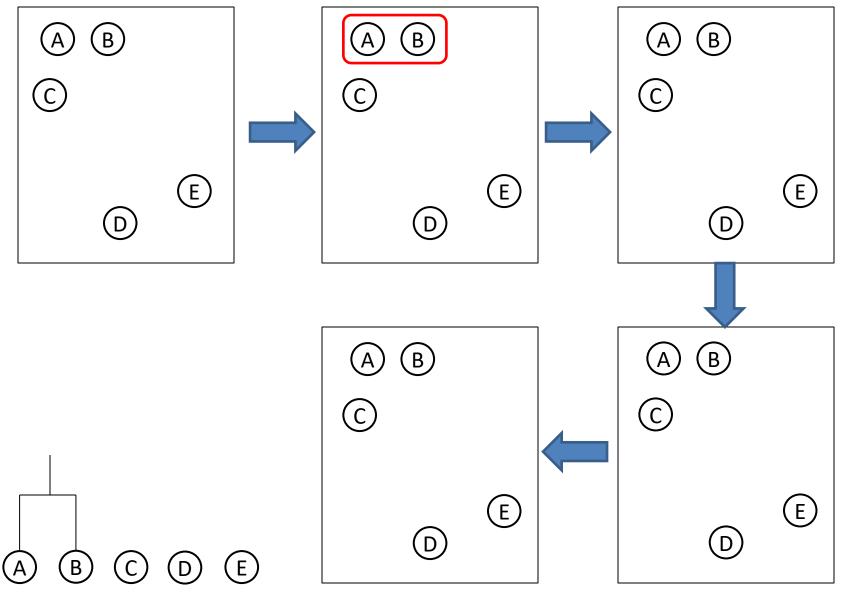
- Do not have to assume any particular number of clusters
 - 'cut' the dendogram at the proper level

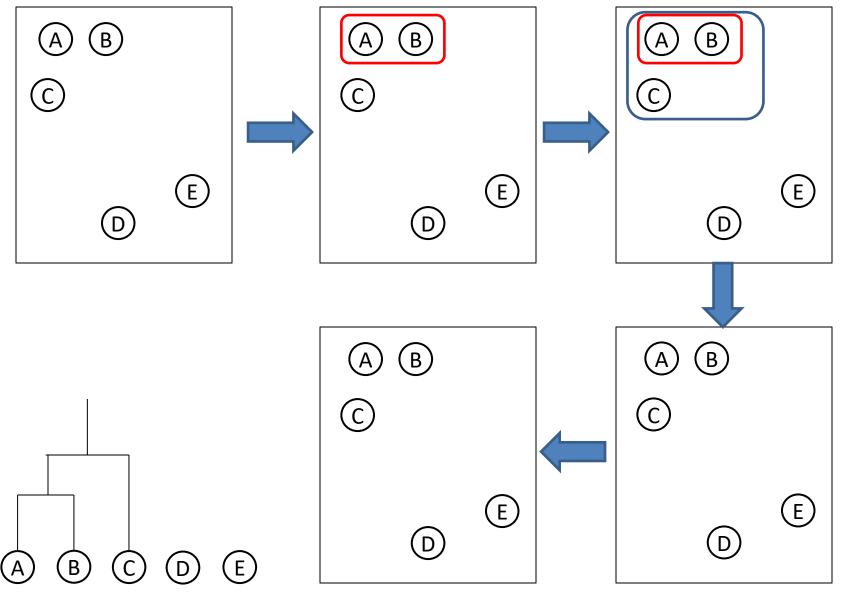


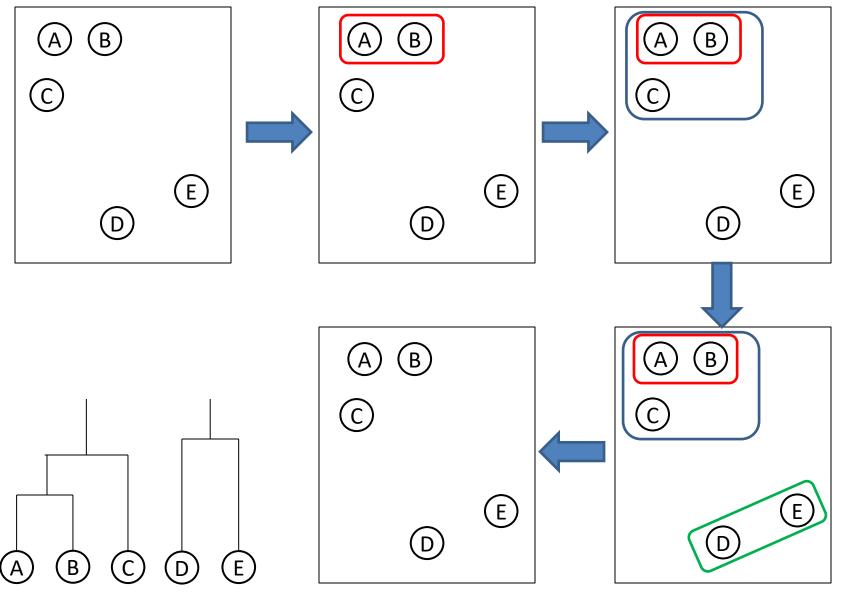
Types of hierarchical clustering

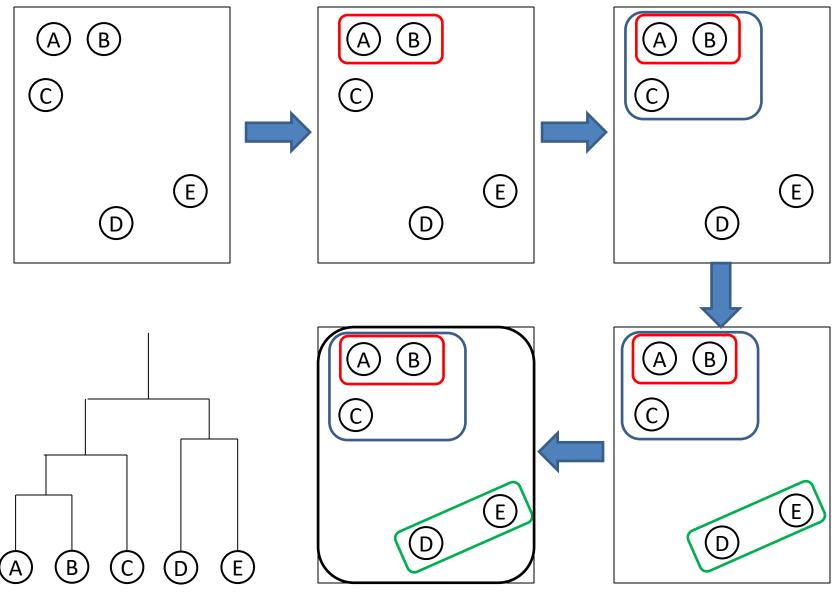
Agglomerative – starts with each point as a cluster, and performs successive merges

 Divisive – starts with all points as a cluster and performs successive splits









Hierarchical Clustering Algorithm

- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster left.

Hierarchical Clustering: pseudocode

Let each data point be a cluster

Compute the proximity matrix

Repeat

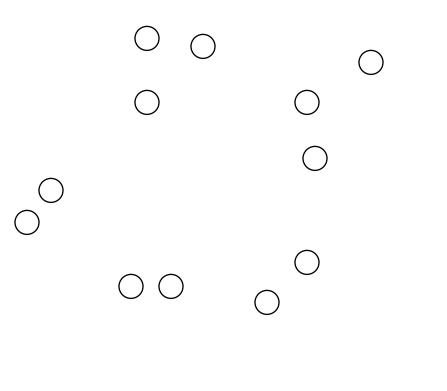
Merge the two closest clusters Update the proximity matrix **Until** only a single cluster remains

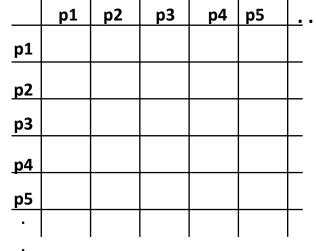
 Key question: how to define the proximity between two clusters?

Starting Situation

 Start with clusters of individual points and a proximity matrix

 p1 | p2 | p3 | p4 | p5 | ...



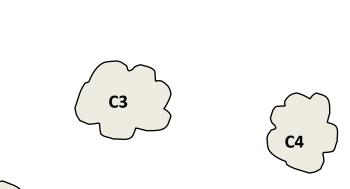


Proximity Matrix

•

Intermediate Situation

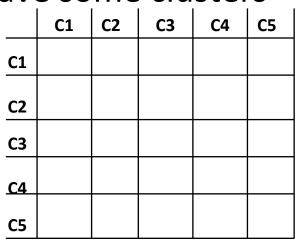
• After some merging steps, we have some clusters



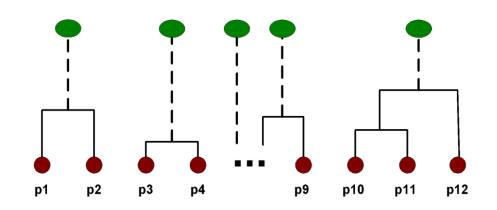
C5

C1

C2

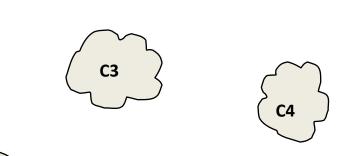


Proximity Matrix



Intermediate Situation

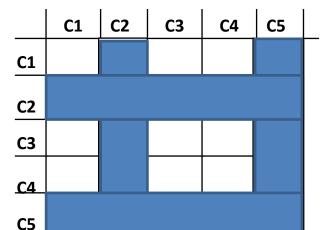
• We want to merge the two closest clusters (C2 and C5) and update the proximity matrix. <u>| c1 | c2 | c3 | c4 | c5 |</u>



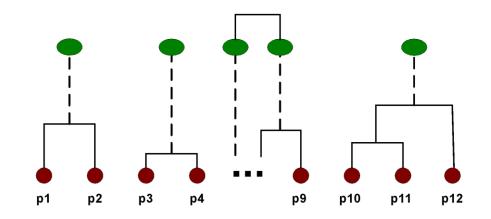
C5

C1

C2

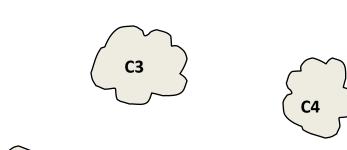


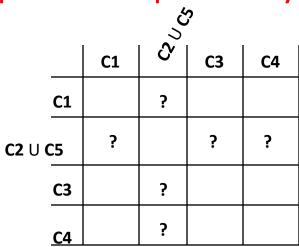
Proximity Matrix



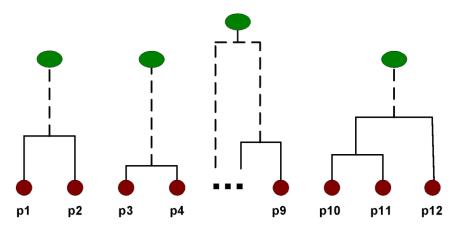
After Merging

 The question is "How do we update the proximity matrix?"

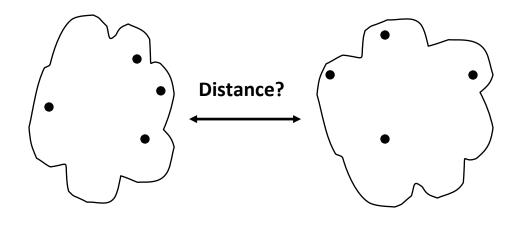




Proximity Matrix



How to Define Inter-Cluster Distance



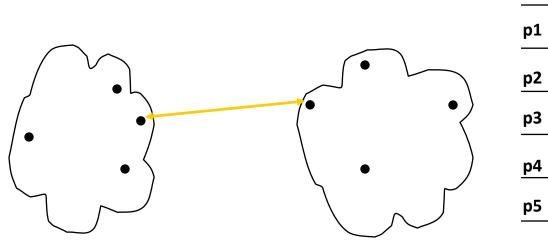
	p1	p2	р3	p4	р5	<u>.</u>
p1						
p2						
р3						
p4						
р5						

- MIN
- MAX
- Centroids Distance
- Group Average

Proximity Matrix

٠

Inter-Cluster Distance: MIN



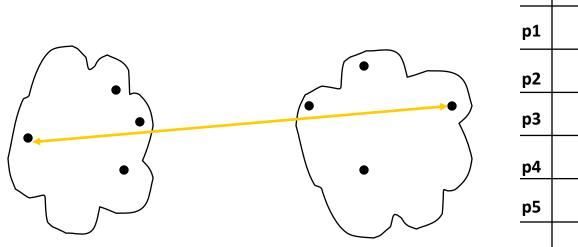
	p1	p2	р3	p4	р5	<u>.</u>
p1						
p2						
р3						
р4						
р5						
•						

Proximity Matrix

٠

Problem: sensitive to outliers

Inter-Cluster Distance: MAX

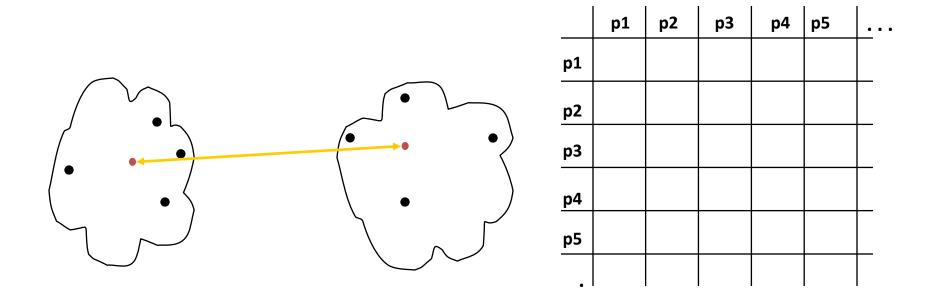


	p1	p2	р3	p4	р5	<u>.</u>
p1						
p2						
р3						
р4						
р5						
•						

Proximity Matrix

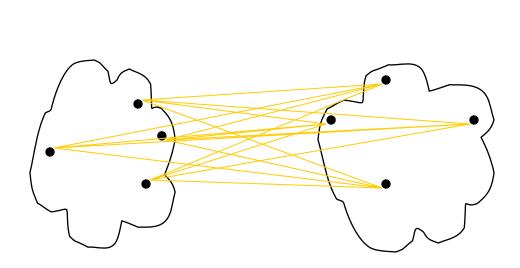
Problem: tends to break large clusters

Inter-Cluster Distance: Centroid distance



Proximity Matrix

Inter-Cluster Distance: Group Average



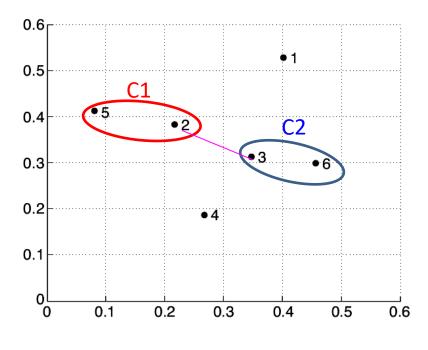
	p1	p2	р3	р4	р5	•••
p1						
p2						
р3						
p4						
р5						
•						

Proximity Matrix

Cluster Distance: MIN (single-link)

 Distance between two clusters is based on the two most similar (closest) points in the different clusters

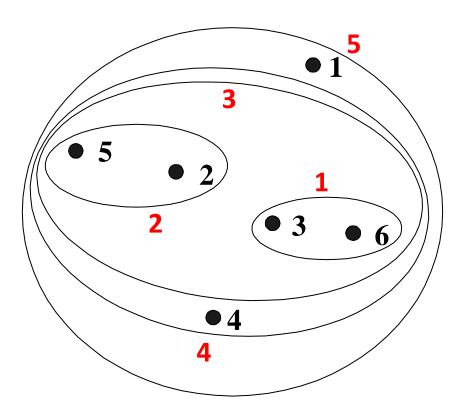
 Determined by one pair of points

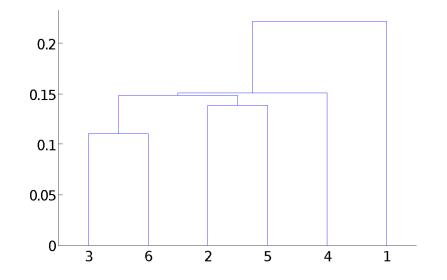


	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

d(C1,C2)=0.15

Hierarchical Clustering: MIN



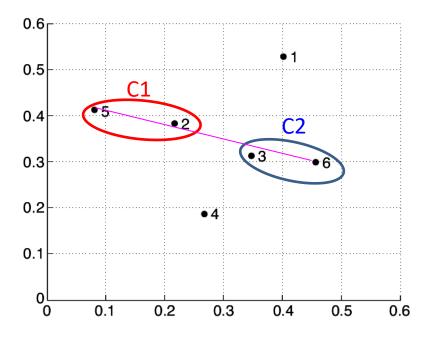


Nested Clusters

Dendrogram

Cluster Distance: MAX

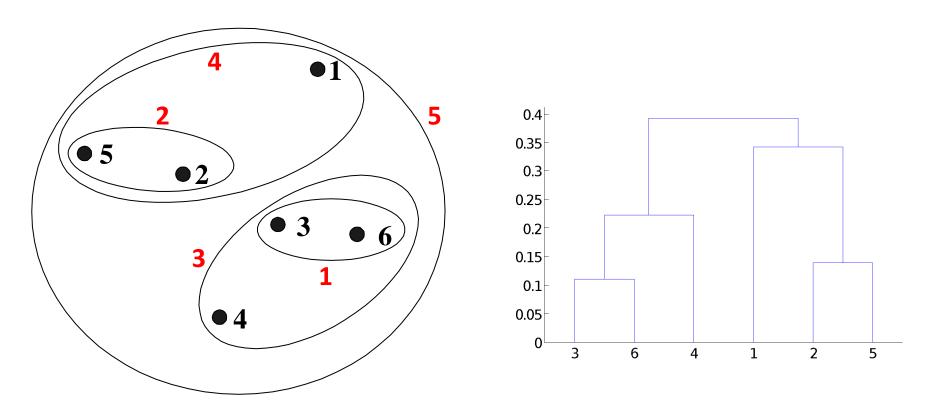
- Distance between two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by one pair of points



	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

d(C1,C2)=0.39

Hierarchical Clustering: MAX



Nested Clusters

Dendrogram

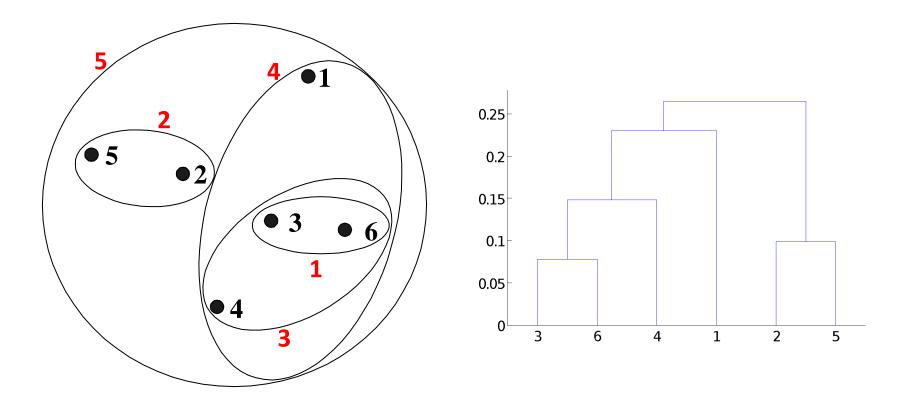
Hierarchical clustering: Group Average

• Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{\substack{p_i \in Cluster_i \\ p_j \in Cluster_j \\ | Cluster_i | * | Cluster_j |}}{|Cluster_i | * | Cluster_j |}$$

- uses all pairs of points from two clusters

Cluster distance: Group Average



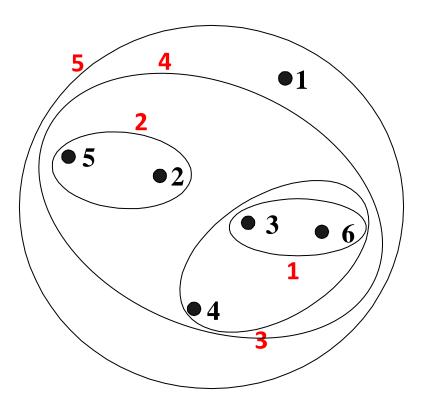
Nested Clusters

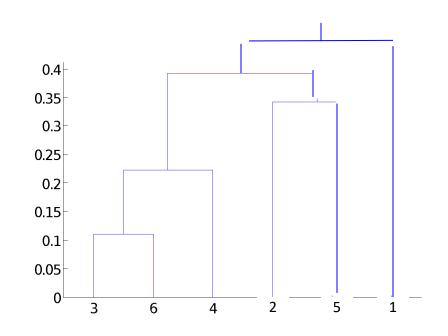
Dendrogram

Cluster Distance: Centroid distance

- Distance between two clusters is based on the distance between their centroids
 - Determined by all points in each cluster

Cluster distance: Centroid distance





Nested Clusters

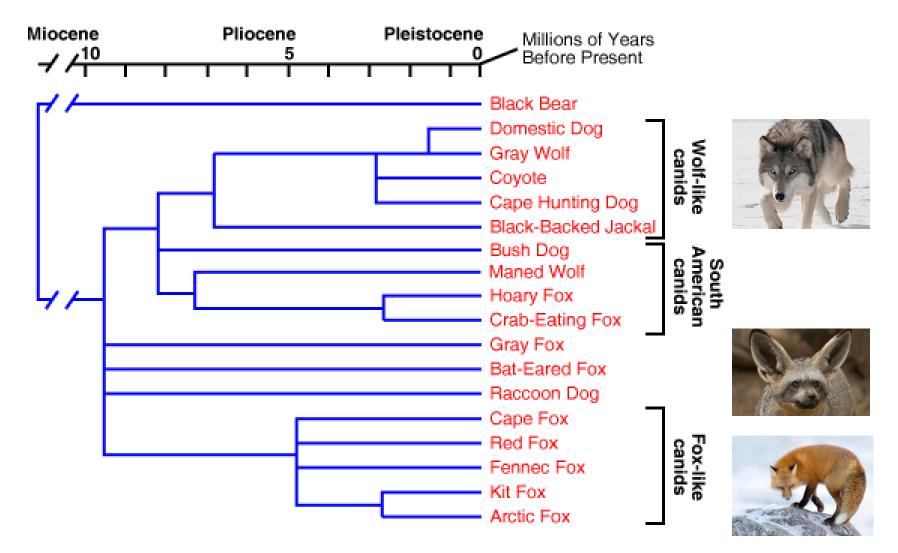
Dendrogram

Hierarchical Clustering: Time and Space

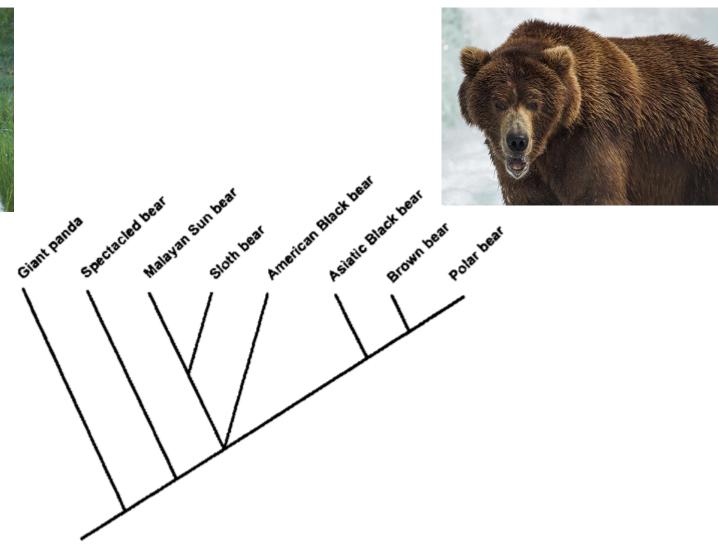
- O(N²) space since it uses the proximity matrix.
 N is the number of data points.
- O(N³) time in many cases
 - There are N steps and at each step the size, N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time using more advanced data structures

Hierarchical clustering is expensive !

Hierarchical clustering applications: evolution of Canidae

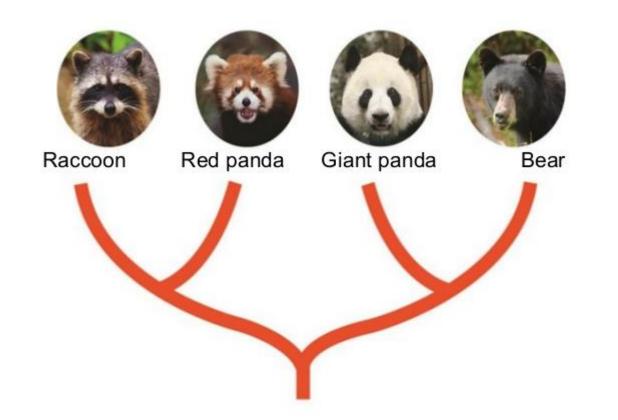


Giant Panda is a bear



What about Red Panda: a Cat or a Bear?

Red Panda: a Bear or a Cat?



Flynn, J. J.; Nedbal, M. A.; Dragoo, J. W.; Honeycutt, R. L. (2000). "Whence the Red Panda?" Molecular Phylogenetics and Evolution.

